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Abstract
We prove an analogue of Krein’s resolvent formula expressing the resolvents
of self-adjoint extensions in terms of boundary conditions. Applications to
quantum graphs and systems with point interactions are discussed.
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Mathematics Subject Classification: 46N50, 47A06, 47A10

Krein’s resolvent formula [1] is a powerful tool in the spectral analysis of self-adjoint
extensions, which found numerous applications in many areas of mathematics and physics,
including the study of exactly solvable models in quantum physics [2–4]. For the use of this
formula in the traditional way one needs a kind of preliminary construction, like finding a
maximal common part of two extensions, see [2, appendix A]. While this is enough for many
applications, including models with point interactions, there are a number of problems such as
the study of quantum graphs or more general hybrid structures, where self-adjoint extensions
are suitably described by more complicated boundary conditions, see [5–7], and it is necessary
to modify Krein’s resolvent formula to take into account these new requirements. This can
be done if one either modifies the coordinates in which the boundary data are calculated
[6, 8] or considers boundary conditions given in a non-operator way using linear relations
[9, 10]. On the other hand, a more attractive idea is to have a resolvent formula taking directly
the boundary conditions into account, without changing the coordinates. We describe the
realization of this idea in the present paper.

Let S be a closed densely defined symmetric operator with the deficiency indices
(n, n), 0 < n < ∞, acting in a certain Hilbert space H. One says that a triple (V , �1, �2),
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where V = C
n and �1 and �2 are linear maps from the domain dom S∗ of the adjoint of S to

V , is a boundary value space for S if 〈φ, S∗ψ〉 − 〈S∗φ,ψ〉 = 〈�1φ, �2ψ〉 − 〈�2φ, �1ψ〉 for
any φ,ψ ∈ domS∗ and the map (�1, �2) : dom S∗ → V ⊕ V is surjective. A boundary value
space always exists [9, theorem 3.1.5]. All self-adjoint extensions of S are restrictions of S∗

to functions φ ∈ dom S∗ satisfying A�1φ = B�2φ, where the matrices A and B must obey
the following two properties:

AB∗ = BA∗ ⇔ AB∗ is self-adjoint, (1)

the n × 2n matrix (A|B) has maximal rank n. (2)

We denote such an extension of S by HA,B . Our aim is to write a formula for the resolvent
RA,B(z) = (HA,B − z)−1 in terms of these two matrices A and B.

We will need some notions from the theory of linear relations. Let V = C
n. Any linear

subspace � of V ⊕V will be called a linear relation on V . By the domain of � we mean the set
dom � = {x ∈ V : ∃y ∈ V with (x, y) ∈ �}. A linear relation �−1 = {(x, y) : (y, x) ∈ �}
is called inverse to �. For α ∈ C we put α� = {(x, αy) : (x, y) ∈ �}. For two linear relations
�′,�′′ ⊂ V ⊕V one can define the sum �′ + �′′ = {(x, y ′ + y ′′), (x, y ′) ∈ �′, (x, y ′′) ∈ �′′};
clearly, one has dom (�′ +�′′) = dom �′ ∩ dom �′′. The graph of any linear operator L acting
in V is a linear relation, which we denote by gr L. Clearly, if L is an invertible operator, then
gr L−1 = (gr L)−1. For arbitrary linear operators L′, L′′ one has gr L′ + gr L′′ = gr(L′ + L′′).
Therefore, the set of linear operators is naturally imbedded into the set of linear relations.

Denote by J an operator acting in V ⊕ V by the rule J (x1, x2) = (x2,−x1), x1, x2 ∈ V .
For a linear relation � on V the relation �∗ = J�⊥ is called adjoint to �; � is called
symmetric if � ⊂ �∗ and is called self-adjoint if � = �∗. The graph of a linear operator L
in V is symmetric (respectively, self-adjoint), iff its graph is a symmetric (respectively, self-
adjoint) linear relation. In other words, a self-adjoint linear relation (abbreviated as s.a.l.r) is
a symmetric linear relation of dimension n. Let A,B be n × n matrices. We introduce the
notation

�A,B = {(x1, x2) ∈ V ⊕ V,Ax1 = Bx2}.
A criterion for �A,B to be self-adjoint was proven in [5]: a linear relation �A,B is self-adjoint
iff A and B satisfy (1) and (2). It is important to emphasize that any s.a.l.r. � can be defined by
this construction, more precisely, there exists a unitary operator U such that � = �i(1+U),1−U

[9]. This shows that there is a bijection between s.a.l.r.s and unitary operators; nevertheless,
we consider parametrization by the two matrices of coefficients as a more natural way to
present s.a.l.r.

The language of linear relations is widely used in the theory of self-adjoint extensions of
symmetric operators [3, 8, 11]. Let us return to the symmetric operator S and its boundary
value space (V , �1, �2). It is a well-known fact that there is a bijection between all self-
adjoint extensions of S and s.a.l.r.s on V . A self-adjoint extension H� corresponding to a
s.a.l.r. � is a restriction of S∗ to elements φ ∈ dom S∗ satisfying abstract boundary conditions
(�1φ, �2φ) ∈ � [9, theorem 3.1.6]. To carry out the spectral analysis of the operators H� it
is useful to know their resolvents, which are provided by the famous Krein’s formula [1, 10].
To write this formula we need some additional constructions. For z ∈ C \R, let Nz denote the
corresponding deficiency subspace for S, i.e. Nz = ker(S∗ − z). The restrictions of �1 and �2

onto Nz are invertible linear maps from Nz to V . Put γz = (
�1|Nz

)−1
and Q(z) = �2γz; these

maps form holomorphic families from C \ R to the spaces L(V ,H) and L(V , V ) of bounded
operators from V to H and from V to V , respectively. Denote by H 0 a self-adjoint extension
of S given by the boundary conditions �1φ = 0. That is for A = 1 and B = 0, then the maps



A remark on Krein’s resolvent formula and boundary conditions 4861

γz and Q(z) have analytic continuations to the resolvent set res H 0, and for all z, ζ ∈ res H 0

one has [10]

Q(z) − Q∗(ζ ) = (z − ζ )γ ∗
ζ γz. (3)

The maps γz and Q(z) are called the �-field and the Q-function for the pair (S,H 0),
respectively.

For all z ∈ res H 0 ∩ res H� we consider the linear relation gr Q(z)−�. While this set is,
generally speaking, not the graph of an operator, the inverse linear relation (gr Q(z) − �)−1

is the graph of a certain linear operator C�(z), so that the resolvent R�(z) = (H� − z)−1 is
expressed through the resolvent R0(z) = (H 0 − z)−1 by Krein’s formula [10, proposition 2]

R�(z) = R0(z) − γzC
�(z)γ ∗

z . (4)

The calculation of C�(z) is a rather difficult technical problem, as it involves ‘generalized’
operations with linear relations. Such difficulties do not arise if � is a graph of a certain linear
operator L; the corresponding boundary conditions can be presented by

�2φ = L�1φ, (5)

and such extensions are called disjoint with respect to H 0 because they satisfy the equality
dom H� ∩ dom H 0 = dom S [1] (the operator S is then called the maximal part of H 0 and
H�). Then the subspace gr Q(z) − � is the graph of the invertible operator Q(z) − L,
and C�(z) = (Q(z) − L)−1. Actually, for a given self-adjoint extension H one can find a
boundary value space (which is, of course, not unique) such that H corresponds to the boundary
conditions (5) with a suitable L [6, 8]. But finding such boundary value space involves a lot
of other problems, in particular, the operators Q(z) and γz must be changed [8, 10, 12]. On
the other hand, any boundary conditions can be represented with the help of two matrices by

A�1φ = B�2φ ⇔ (�1φ, �2φ) ∈ �A,B (6)

with A and B satisfying (1) and (2). Our aim is to show that the resolvent formula admits a
simple form in terms of these two boundary matrices. Here is the main result of our paper.

Proposition (modified Krein’s resolvent formula). Let HA,B be the self-adjoint extension
of S corresponding to the boundary conditions (6) with A,B satisfying (1) and (2), and
z ∈ res H 0 ∩ res HA,B , then

(a) the matrices Q(z)B∗ − A∗ and BQ(z) − A are non-degenerate,
(b) the resolvent RA,B(z) = (HA,B − z)−1 is connected with R0(z) by

RA,B(z) = R0(z) − γzB
∗(Q(z)B∗ − A∗)−1γ ∗

z , (7)

or

RA,B(z) = R0(z) − γz(BQ(z) − A)−1Bγ ∗
z . (8)

Remark. Formulae (7) and (8) are equivalent. To obtain them from each other one should
replace z by z and take in both sides adjoint operators taking into account the resolvent property
R(z) = R∗(z) and the equality Q(z) = Q∗(z) which follows from (3).

First we prove some simple properties of the matrices A and B:

Lemma. Let A,B satisfy (1) and (2), then

(a) ker A∗ ∩ ker B∗ = 0,
(b) �A,B = {(B∗x,A∗x), x ∈ V }.
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Proof of lemma. (a) We first remark that condition (2) is equivalent to ran A + ran B = V .
Then ker A∗ ∩ ker B∗ = (ran A)⊥ ∩ (ran B)⊥ = (ran A + ran B)⊥ = V ⊥ = 0.

(b) Equation (1) says that {(B∗x,A∗x), x ∈ V } ⊂ �A,B . At the same time, it follows
from (a) that the linear subspace on the left-hand side has dimension n, which coincides with
the dimension of �A,B . Therefore, these two linear subspaces coincide. �

Proof of proposition. (a) The matrices in question are adjoint to each other, therefore, it
suffices to prove that one of them is non-degenerate.

Consider first the case z ∈ C\R. As follows from (3), for such z the matrix Im z · Im Q(z)

is positive definite (Here Im Q = (Q − Q∗)/(2i).) Assume that det(Q(z)B∗ − A∗) = 0, then
there exists a non-zero x ∈ V with

(Q(z)B∗ − A∗)x = 0. (9)

If B∗x = 0, then, due to item (a) of lemma, we would have A∗x �= 0, and (9) would be
impossible. Therefore, B∗x �= 0. Taking the scalar product of B∗x with both sides of (9) we
get 〈Q(z)B∗x, B∗x〉 = 〈x,AB∗x〉. The number on the left-hand side has non-zero imaginary
part, while the number on the right-hand side is real due to (2). This contradiction proves the
requested non-degeneracy for non-real z.

Now let z ∈ R ∩ res H 0 and det(Q(z)B∗ − A∗) = 0. Let us show that z ∈ spec HA,B .
Equation (3) says that Q(z) is now self-adjoint. As the matrix Q(z)B∗ −A∗ is non-invertible,
there is a non-zero x ∈ ran(Q(z)B∗ − A∗)⊥ = ker(BQ(z) − A). By definition, the element
φ = γzx is an eigenvector of S∗ corresponding to the eigenvalue z. Let us show that
φ ∈ dom HA,B (and then z is an eigenvalue of HA,B). In fact, one has �1φ = �1γzx =
�1�

−1
1 x = x, �2φ = �2γzx = Q(z)x, and, therefore, A�1φ−B�2φ = −(BQ(z)−A)x = 0,

which means that φ ∈ dom HA,B .
(b) Taking into account the remark after proposition it is enough to prove only (7).

Actually, we must only show that for z ∈ res H 0 ∩ res HA,B the linear relation inverse
to gr Q(z) − �A,B is the graph of B∗(Q(z)B∗ − A∗)−1. Taking into account item
(b) of lemma, we conclude that dom Q(z) ∩ dom �A,B = ran B∗ and gr Q(z) − �A,B =
{(B∗u, (Q(z)B∗ − A∗)u), u ∈ V } = {(B∗(Q(z)B∗ − A∗)−1w,w),w ∈ V }. �

Let us consider some examples from the point of view of the resolvent formula.

Example (graph with a single vertex). LetH = ⊕n
j=1Hj withHj = L2

(
R

(j)
+

)
, where each R

(j)
+

is a copy of the positive half-line [0, +∞). We will write the elements of φ ∈ H in the vector
form, φ(x) = (φj (xj )), φj ∈ Hj , xj ∈ R

(j)
+ . By S we denote an operator which acts on each

Hj as −d2
/

dx2
j with the domain dom S = {

φ = (φj ), φj ∈ W 2,2
(
R

(j)
+

)
, φj (0) = φ′

j (0) =
0, j = 1, . . . , n

}
. Then S∗ is the direct sum ⊕n

j=1d2
/

dx2
j with the domain ⊕n

j=1W
2,2

(
R

(j)
+

)
.

An integration by parts shows that as a boundary value space one can take (Cn, �1, �2) with
�1φ = �1(φj ) = (−φ′

j (0)) ≡ −φ′(0), �2φ = �2(φj ) = (φj (0)) ≡ φ(0); details may
be found in [5–7]. Then any self-adjoint extension of S involves the boundary conditions
Aφ′(0) + Bφ(0) = 0 with suitable A and B, which describes the coupling of n half-lines at the
origin. The operator H 0 defined by φ′(0) = 0 is the direct sum of Neumann Laplacians, and
its Green function (the resolvent integral kernel) G0(x, y; z) is given by

G0(x, y; z) = 1

2
√−z

diag(e−√−z|xj −yj | + e−√−z(xj +yj )),

where the continuous branch of the square root is chosen by the rule Re
√

z > 0 for
z /∈ (−∞, 0], and x = (xj ), y = (yj ), xj , yj ∈ R

(j)
+ . Then the elements g

j
z =

G0(·, 0; z)ej = e−√−zx/
√−zej , (ej ) is the standard basis in C

n, j = 1, . . . , n, form a
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basis in Nz = ker(S∗ − z), and the map γz defined by C
n � v = (vj ) �→ (

vjg
j
z

)
is the

corresponding �-field, because �1γzv = v for any v ∈ C
n, and the Q-function has the simple

form Q(z) = 1/
√−zEn, where En is the unit matrix of order n. Therefore, the resolvent for

HA,B takes the form

RA,B(z) = R0(z) −
n∑

j,k=1

Cjk(z)
〈
gk

z , ·
〉
gj

z

with C(z) = (BQ(z) − A)−1B = √−z(B − √−zA)−1B. A similar formula was obtained
in [5].

Example (point interactions with mixed boundary conditions). Here we consider the well-
known example of point interactions in three dimensions [2]. Let Y = (y1, . . . , yn) ⊂ R

3.
Denote by S the Laplacian with the domain dom S = {φ ∈ W 2,2(R3), φ(Y ) = 0}. This
operator has deficiency indices (n, n), and the adjoint operator S∗ is the Laplacian with the
domain dom S∗ = W 2,2(R3\Y ). Each function φ ∈ dom S∗ has the following asymptotics
near each point yj , j = 1, . . . , n:

φ(x) = 1

4π |x − yj |φ
1
j + φ2

j + o(1), x → yj , φ1
j , φ

2
j ∈ C,

and the vectors �1φ = (
φ1

j

)
and �2φ = (

φ2
j

)
can be considered as boundary values

of φ, see [3, 6, 13] for details. The operator H 0 is just the free Laplacian in R
3.

Denote by G0(x, y; z) its Green function, G0(x, y; z) = e−√−z|x−y|/(4π |x − y|), then
the functions g

j
z = G0(·, yj ; z), j = 1, . . . , n, form a basis in ker(S∗ − z), and the map

γz : C
n � v = (vj ) �→ ∑

vjg
j
z is the �-field (it is easy to check that �1γzv = v), and the

Q-function is given by the n × n matrix

Qjk(z) = G0(yj , yk; z) = e−√−z|yj −yk |

4π |yj − yk| , j �= k, Qjj (z) = −
√−z

4π
.

Therefore, the resolvent of the operator HA,B given by the boundary conditions Aφ1 = Bφ2

can be defined by its integral kernel

GA,B(x, y; z) = G0(x, y; z) −
n∑

j,k=1

Cjk(z)G
0(x, yj ; z)G0(yk, y; z)

with C(z) = (BQ(z) − A)−1B. We remark that the class of interactions described by this
formula is wider than the one studied in [2]. Some properties of HA,B in its dependence on A

and B were studied recently in [13].
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